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Introduction�

It is curious that little or no scientific study of the impact and rebound of a well inflated, inextensible shell,�
e.g. a football, exists. The elastic and plastic impact of solid spheres has long been a subject of very detailed�
investigations so that the term 'Hertzian stress' is well known, yet comparable analyses concerning tile im-�
pact of inflated thin spherical pellicles is hardly to be found. The flight of a sphere - a bluff body - through�
air has, however, been the subject of many researches and references [1] to [4] are typical. This is not to say,�
however, that there is a plethora of theoretical and experimental results on hand which can be applied, for�
there are gaps in our fundamental knowledge of the subsonic aerodynamics of flow over bluff bodies.�

In what follows an endeavour is made to describe and discuss quantitatively the two aspects of ball or spher-�
ical shell mechanics to which the mechanical sciences can contribute.�

These are,�

(i) The normal impact and rebound of a typical present-day football from a rigid plane surface assuming the�
ball to possess rectilinear motion only (no spinning) and that there are no hysteresis or other energy losses .�

 A linearised theory is first proposed which assumes that (a) the depth of the deformation zone is small rela-�
tive to the radius, and (b) the pressure inside the ball remains constant throughout impact; a relationship is�
established between the maximum area of contact and the impact speed and also an estimate is made of the�
time of contact. The two simplifications (a) and (b) are removed in turn and the effects of doing so on the�
relationships between the various parameters are calculated. The theoretical results are compared with those�
of a series of experimental tests performed over a limited range of impact velocities and are shown to be in�
good agreement.�

To the authors' knowledge there is no Information on this subject. Their contribution is therefore novel, al-�
beit in some respects oversimplified and provisional.�

(ii) The phenomena associated with the flight of the ball can be understood easily by the layman when once�
the concepts of drag and lift are appreciated. Every engineering student will have dealt with them at some�
time or other during his academic training. Their application to the movement of a football in a gravitational�
field, however, is not straightforward but meaningful results or calculations can be made with the aid of per-�
missible assumptions, In this second section the topic is surveyed and a number of suggestions made. There�
is need for direct experimental verification by observing the game of football itself, probably using a fast�
camera.�



The authors' aims in this paper are to present some new results, to furnish engineering science teachers with�
attractive examples which are close to students' interests, to stimulate further detailed investigations of the�
several absorbing problems surrounding this topic after exposing the limitations of the approach and to en-�
rich the appreciation of the game of football.�

NOTATION�

 d  diameter of ball�
 e  equatorial speed/wind speed�
 f rectilinear acceleration of ball�
 m�

1�
 mass of free portion�

 m�2� mass of contact portion = M - m�1�
 p  current internal pressure in excess of atmospheric pressure�
 P�A�  atmospheric pressure�
 P0 initial internal pressure in excess of atmospheric pressure current radius of�

 r contact area�
 r�m�,y�m� maximum values of r & y�
 z�m�,A�m� maximum values of z & A�
 t time�
 u current flight speed of the ball�
 u�c� speed of ball at critical Reynolds number�
 u�0� impact speed�
 v dz/dt�
 v�o�  u�o�/R�
 x  distance from rigid plane to G�
 y  current polar height of depression in pellicle (see Fig 2)�
 z  y/R�
 A'  presentation area of ball�o�R�2�

 A  current area of contact�
 C�D�  drag coefficient�
 C�L�  lift coefficient�
 D  drag force�
 G  centroid of deformed pellicle�
 G�1�  centra id of free portion of pellicle�
 G�2�  centroid of contact portion of pellicle�
 L  lift force�
 M  mass of pellicle�
 O centre of undeformed pellicle�
 R  radius of pellicle�
 Re  Reynolds number�
 T  time of contact�
 V  current volume of pellicle�
 V�o�  volume of undeformed pellicle  4�o�R�3�/3�

a� 2�o�Rp�o�/M�
b�  C�D�q�A'/2M�
c� ratio of specific heats for air, taken to be 1.4�
m� kinematic viscosity of air�
q� density of air�
DQ� increase in temperature of air within pellicle�



Q�
0�

 initial temperature of air within pellicle�
h� angle subtended at centre of a circle�

PART 1. IMPACT AND REBOUND OF A WELL-INFLATED PELLICLE�

The analysis of the dynamics of the rebound of the pellicle from a frictionless, plane, rigid surface is based�
upon certain simplifying assumptions regarding the mode of deformation of the sphere during the time of�
contact and the nature of the material comprising the pellicle. In as far as the properties of the material i.e.�
elastic or otherwise, do not enter into the analysis, the problem is treated here simply as one in dynamics; it�
is at no time a hyperstatical one.�

    Fig 1            Fig 2�
          Assumed profile of deformed pellicle                Centroids of deformed pellicle and its�
                 component parts�

It is assumed that during the period of contact the shape adopted by the membrane is as shown in Fig 1. The�
contact area is a disc of current radius r whilst the remainder of the membrane (Called the free portion) is�
spherical of radius R, the pre-impact radius. The material is therefore considered to be virtually inextensible�
since the radius does not respond by any appreciable amount to the change of internal pressure consequent�
on the decrease in the volume enclosed by the membrane. The specification that the contact zone is flat ne-�
glects any tendency of that part of the pellicle to buckle inwards. A detailed analysis of the conditions under�
which the mode of deformation changes from that shown in Fig 1 to one in which all or part of the contact�
portion has buckled is beyond the scope of the present paper. In view of the fact that the membrane stresses�
are initially tensile due to inflation and that the contact zone is under the influence of the internal pressure�
inside the pellicle it is expected that buckling will be inhibited for a considerable range of impact velocities.�

The contact pressure is taken to be uniform over the disc of radius r and of value (p�A� + p) where p is the cur-�
rent internal pressure in excess of the atmospheric pressure p�A�. No extra line load around the periphery of�
the contact area is included as the flexural rigidity of the pellicle is also neglected. In order to specify this�
latter load and to examine the buckling effect it would be necessary to use non-linear shell theory, see e.g.�
[5].�

By considering the pellicle to be a system of particles of total mass M, the equation of motion can be de-�
duced. In Fig 2, O is the position of the point which was the centre of the pellicle before impact after it has�
moved a distance y beyond initial contact. G�1� is the centroid of the free portion which has mass m�1� and G�2� is�
the centroid of the contact portion which has mass m�2� (=M - m�1�). From the geometry of Fig 2 and the defini-�
tion of the centroid of a system of particles we have,�



If G represents the centroid of the deformed pellicle, then x, its distance from the plane of impact, can be�
found by taking moments about G. Thus�

By considering the external forces (shown in Fig 1) acting on the pellicle, its equation of motion is�

since r = R Cos�h� and allowing for the fact that the excess pressure may vary as the deformation proceeds.�
The notation�h�' represents differentiation with respect to time.  The degree of flattening of the pellicle is de-�
scribed by the paramter z =  y/R. Since z = 1--sinh, equation (4) can be re-written in terms of z as�

The notation z' and z" represent differentiation with respect to time.�

The remainder of this section is devoted to three solutions of equation (5).�



First approximation�

First consider the case in which the values of z and z' are sufficiently small that their squares and products�
can be neglected and that the pressure p(z) is effectively constant at its initial value of p�0� In this approxima-�
tion equation {5) becomes�

putting�a� =�2�o�Rp�0�/M. According to this equation the motion of the pellicle during contact is simple har-�
monic of frequency�z� =���a� .�

Integrating (6) gives�

where u�0� is the speed of the pellicle on impact, (i.e. the value of y' at t = 0). If z = z�m� when the pellicle comes�
instantaneously to rest, then from (7)�

Since the motion is simple harmonic, the time of contact, T, is half the period�

Later, a comparison is made with the results of a set of tests which were performed on an Association Foot-�
ball in which the maximum area of contact was measured and correlated with the impact speed.  For the pur-�
pose of comparison�

where A is the area of contact and the suffix m denotes the maximum values of the parameters. From Fig 1�



However, to be consistent with the linearisation of equation (5), (10) is used in the form r�m�2�j� 2Ry�m�. Thus�

A�m� =, 2�o�Ry�m� .= 2�o�R�2�Z�m� and therefore�

Second approximation�

For this case the effects of geometrical non-linearity are included by retaining all the terms in equation (5)�
but p(z) is again to be considered as constant at p�o�. In this way, comparing the results of this approximation�
with those of a third approximation in which p(z) is allowed to vary, the significance of the compressibility�
of the air can be seen. The equation of motion is�

This equation can be integrated once using the integrating factor (2-z)z'. Thus�

where v�0� = u�o�/R and w is the dummy variable of integration. The relationship between u�0� and z�m� can be�
found by setting z' = 0 and z = z�m� in equation (13). Hence,�

Since A�m� =�o�R�2�Z�m�(2-z�m�), from (10), the relationship between u�o� and A�m� can be established over a range of�
z�m�.�

The time of contact (and the value of z�m� for a given u�0�) can be found by integrating numerically the system�
of first order ordinary differential equations�

with v = u�0� /R, z = 0 at t = 0, which is equivalent to solving equation (11 ). This requires that�a� be specified�
numerically, a typical set of results will be presented and discussed later.�

Third approximation�

The assumption of constant pressure during the compression of the pellicle is now removed. Since the con-�
tact times both experimentally (see later) and according to the two theoretical approximations above are�
comparatively short, it is assumed that the compression of the air inside the pellicle takes place adiabatically.�
Hence�



where p and V are the excess pressure and volume enclosed by the membrane and p�0� and V�0� are their values�
before impact.�c�is the ratio of specific heats for air taken to be 1.4 in the example given later. According�
to the mode of deformation depicted in Fig 2, the decrease in the volume enclosed by the membrane,�
(V�0� - V), for a given value of y is the volume of the spherical cap of radius R and polar height y.�

 Thus, (Vo - V) =�1�/�3�o�y�2�(3R - y) =�1�/�3�oR�3�z�2�(3 - z).�
Hence�

Substituting this into (16) and re-arranging,�

For the case of an Association Football treated later, p�0�= 15 Ibf/in�2� and in the example given, p�A� will also�
have the same value. Thus (17) is simplified to�

Values of p/p0 are given below in Table 1 for values of z over the range 0.1 to 1.0. It can be seen that the�
force which produces the deceleration and subsequent acceleration of the pellicle is substantially increased�
for the latter half of the range of z as compared with that given by the second approximation. Associated�
with this increase in pressure is an increase in temperature Q which can be evaluated using the equation of�
state,�

This is displayed in Table 1 for various values of z.�

It is interesting to note that the final figure in the Table 1 corresponds to a temperature rise of about 100�)�C�
for an initial air temperature of about 40�)�C.�



Inserting (17) into equation (5) a system of equations similar to (15) must be solved in which the second�
equation is now�

Unfortunately, unlike the second approximation, this cannot be integrated explicitly by using an integrating�
factor but a numerical solution can again be obtained for any given range of time. From this the time of�
contact and the relationship between u�o� and A�m� can be deduced.�

Example: Rebound of an Association Football�

The three solutions of the equation of motion described above may now be applied to the specific case of an�
Association Football. According to the Laws of the game, p�0� = 15 Ibf/in�2�, M = 1 Ib, R = 0.36 ft, and these�
give�a� = 1.573 x 10�5� sec�-2�. Thus according to the first approximation, the relationship between u�0� and A�m� is�
given by�

if u�0� is given in ft/sec. This is shown in Fig 3 which also includes the results of a series of experiments to be�
discussed later�

Fig 3 Maximum Area of Contact vs Impact Speed�
 ---- Theoretical Curves  0 Experimental Points�

According to equation (9) the first approximation predicts a constant time of contact of 7.92 rnillisec for the�
value of�a� given above whilst the second and third approximations indicate that T varies with u�o�. The de-�
pendence of the time of contact on the impact speed is shown in Fig 4. All three approximations give a con-�



tact time of around 8 millisec up to an impact speed of about 20 ft/sec above which the second and third�
approximations diverge, the second approximation indicating an increase and the third approximation a de-�
crease in T as u�o�increases. This difference reflects the significant part played by the air pressure variation�
inside the ball at larger impact speeds.�

Finally, an interesting feature of both the second and third approximations can be seen from equations (15)�
and (20). For a short interval of time after initial contact dv/dt = z">o. Consider the vertical motion of the�
top of the ball, this being typical of the motion of all particles in the free portion of the pellicle. The down-�
ward acceleration is given by�

Thus the�free� portion�accelerates� Initially. This is due to the decrease in the mass of the moving part of the�
pellicle, the retarding force having not built up sufficiently to decelerate this part of the pellicle in these�
early stages of deformation. A typical graph of the speed of the top of the ball against time up to the instant�
of maximum area of contact is shown in Fig 5 for an impact speed of 90 ft/sec (using the third approxima-�
tion). (Naturally at this stage, this answer should be viewed with caution!)�

Fig 4  Time of Contact vs Impact Speed for the three theoretical approximations�

 EXPERIMENTAL RESULTS OVER A LIMITED RANGE OF U�0�

Two sets of tests were performed in order to measure the impact speed, rebound speed, area of contact and�
(for the second set) the time of contact for a Mitre Multiplex Football inflated to 15 Ib/in�2�

The first series of tests consisted in projecting the ball at a small angle to the vertical against a horizontal�
board which had been given a thin covering of chalk. The event was illuminated by means of a stroboscopic�
light (frequency 2500 flashes/min) and recorded by exposing the film of a stills camera. A vertical back-�
ground grid was used to provide a reference for measurements. The path of the ball before and after impact�
could be seen from the developed film and the impact and rebound speeds calculated easily from measure-�
ments taken from the film. The area of contact was measured from the dimensions of the imprint left on the�
board. The results are included on Fig 3 alongside the theoretical curves.�



Fig 5 Speed of free portion of pellicle vs time up to instant of maximum area of�
contact for u�0� - 90 ft/sec.�

In the second series of tests the time of contact between the ball and a rigid plate was measured using the�
apparatus which is shown diagramatically in Fig 6. As the ball touched each trip wire and the base plate, re-�
sistors were "shorted-out" thus giving step-wise increases in voltage. From the oscilloscope trace of this�
voltage the time interval between the ball touching the second and third trip wires and the duration of the�
contact with the base plate could be measured. As the separation between trips 2 and 3 was known a set of�
impact velocity/time of contact data was obtained. Again the range of the impact velocity was somewhat�
restricted owing to the provisional nature of the experiments but the trend of the relationship between the�
two parameters was quite clear from the tests. A set of values of impact speed and contact time is shown in�
Table II.�



Fig 6  Simple arrangement for measuring time of contact and impact speed�

A more detailed examination of contact phenomena will be the subject of a future investigation.�

COMPARISON BETWEEN THEORIES AND EXPERIMENTS�

Relationship between u�0� and A�m�

It is clear from Fig 3 that, whilst there is good agreement particularly with the third approximation, the area�
of contact corresponding to a given impact speed indicated by the theory is consistently higher than that�
measured experimentally. This effect is due to the neglect of all sources of energy loss… in the theoretical�
model. Not all of the kinetic energy of the ball is used to compress the air inside the ball and so the value of�
Am which provides a measure of this compression is necessarily smaller than the theoretical value.�

Relationship between u�o� and T�

The decrease in contact time with increasing impact speed which the third approximation predicts is borne�
out by the limited experimental results and it is clear that the increase of internal pressure of the ball during�
contact is an important factor in the contact behaviour.�



It would appear that the decrease in the contact time starts at a lower impact speed than predicted theoreti-�
cally. This could be due to the neglect of bending effects in the casing which are comparable with the contri-�
bution of the contact pressure. The presence of the copper foil could also have a significant effect at these�
lower impact speeds and yet another feature of the football which would have a bearing on this behaviour is�
the presence of the seams which provide local portions of increased stiffness. In spite of the neglect of these�
physical asperities and the material properties of the football the theory still appears to provide an adequate�
model for the impact behaviour.�

BALL DEFLECTION OR 'BREAK'�

Limitations of space prevent detailed discussion of interesting effects at impact with a rigid surface by a�
rigid sphere which possesses a velocity not wholly normal to the plane of impact and which also spins about�
an arbitary axis. Attention is directed to one feature and one striking result. A sphere which moves in a given�
vertical plane and whose axis of spin at impact is perpendicular to it, leaves the surface at an angle different�
from that at which it impinges; however, it continues its flight in the same vertical plane see eg S L Loney�
p274 [8]. Adapting Loney's elementary treatment it may be shown that if the spin axis is not perpendicular�
to the plane of flight prior to impact, then its vertical plane of flight after impact will be inclined. The mag-�
nitude of this angle of deflection depends on the velocity and angular velocity at impact as well as the as-�
sumed condition between the plane and the ball. It may easily be shown that for impact against a rough�
plane, a solid sphere may be deflected or 'break' through as much as about 42° and a spherical shell through�
23° when forward motion of the ball persists.�

Whilst there is some interest in discussions of the 'break' of a football at impact, yet this topic is of most in-�
terest in relation to cricket and table tennis, and much insight into bowling practices in cricket may be had�
by carefully examining the rigid body mechanics of plane impacting, spinning. rigid spheres.�

PART II.    ASPECTS OF THE FLIGHT OF A FOOTBALL�

In flight, a football is subjected to gravitational force and to aerodynamic lift and drag forces. Attention will�
be directed towards applying published data on the lift and drag forces on a sphere to the specific example of�
a football in order to show how the characteristics of these forces influence the flight. Much of the basic in-�
formation regarding these forces, in particular the experimentally determined dependence of the lift and drag�
coefficients on the Reynolds number, can be found in [1]. To illustrate the types of calculation which can be�
made, two features of the flight of a football will be examined,�

 (a) a set of speed-distance-time curves will be plotted for the horizontal flight of a non-spinning foot�
      ball.�

 (b) an estimate will be made of the amount of swerve produced by the "lift" force exerted on a�
      spinning football and it will be shown that this estimate is more than adequate to confirm that a�
      goal can be scored direct from a corner kick.�



(a) Horizontal flight of a non-spinning football�

Provided the football is not spinning, the major aerodynamic force on it is the drag force. (There are random�
fluctuations in the aerodynamic force transverse to the direction of flight (2) -which could account for the�
wobbling sometimes noticed in the high speed flight of a football but these are effects secondary to the main�
decelerating drag force considered in this section.) The complex aerodynamic conditions which prevail im-�
mediately after the kick whilst the wake is building up behind the ball are ignored, For present purposes the�
wake is considered to be fully developed from the moment of impact and thus experimental data pertaining�
to steady state conditions can be used, Data on the aerodynamic forces exerted on a sphere are usually�
quoted in terms of non-dimensional force coefficients. The drag coefficient C�D� is defined by�

where D is the drag force, A' the cross-sectional area of the sphere, u its speed relative to the air and�q� is the�
density of the air, Within the usual range of football speeds it has been shown experimentally that C�D� is a�
function only of the Reynolds number�

d being the diameter of the sphere and�m� the kinematic viscosity of the air. Typical plots of C�D� versus R�e�,�
taken from (7 ), are shown in Fig 7 for a set of smooth axially symmetric bodies including the sphere, The�
subsequent calculations wiIl be based upon the data given in Fig 7 although the surface of a football cannot�
always be described as smooth and certain materials used in modern footballs have a matt finish which�
could distinctly modify the results given below, The effects of surface roughness and surface irregularities�
will be discussed later.�

The principal feature of Fig 7 is the existence of a critical Reynolds number of approximately 2.15 x 10�5� at�
which there is a sudden fall in C�D�, Thus spheres travelling at slightly supercritical Reynolds numbers experi-�
ence less drag than at subcritical ones.�

Speed-distance-time curves�

The equation of motion for a ball through stationary air and in the absence of all horizontal forces except the�
drag force D, is�

where M is the balf mass and f the linear acceleration, Now from equation (21) ,�



Fig 7 Drag coefficients of smooth axially-symmetric bodies. (Taken from [7])�



where C�D� is the overall drag coefficient, A' (the presentation area of the ball) is�o�d�2�/4 and u is the ball speed.�
The drag coefficient C�D� has to be determined experimentally but for a�smooth� sphere this is fortunately�
available and its variation with Reynolds number Re is shown in Fig 7.�

The Reynolds number in air of a smooth sphere whose diameter d is that of a football (8�1�/�2� in.) is�

where�m�, the kinematic viscosity of the air at a temperature of 20�)�C and a pressure of one atmosphere, is�
16 x 10�-5� ft�2�/sec.�

It is possible now to proceed numerically. For selected values of u, values of Re are obtained using the�
above value for�m� and corresponding values of C�D�are read from Fig 7. Thus with the drag force known for a�
sequence of values of u, the retardation undergone by a football of known mass can be found, and hence the�
distance covered in certain times for a ball moving with a given speed u�1� in the first place. This procedure is�
evidently tedious but, fortunately, when Fig 7 is examined it is seen that�

 (i) C�D� is nearly constant over the range 10�3� < Re < 2.15 x 10�5�,�
     i.e. for 0.23 < u < 50.0 ft/sec it has a value of 0.4�

 (ii) C�D� is nearly constant for Re > 2.15 x 10�5,�

   i.e. for u > 50 ft/sec it has a value of 0.2. When Re = 10�6,� U = 232 ft/sec.�

With (i) and (ii) in mind it is thus possible to arrive at analytical expressions connecting s, t and u. From�
equation (23),�

where s denotes linear distance and t is time. From equation (24)�

U�1� is the speed at t = 0 and u the speed after time t, Hence�



where s is the distance covered when the speed has fallen from U�I� to u.�

Hence�

Now�q�the density of the air at N.T.P. is 0.00233 slugs/ft�3� (specific weight is 0.0765 Ib/ft�3� and for the two�
ranges,�

Table 3 gives values of t and s for specific initial values of u in each of the two ranges, whilst Fig 8 shows�
graphically how u�1� ,u,  t and s are related, the results for the two ranges having been combined. If it is re-�
quired to find how long it takes a football to travel 76 ft (ie. approximately a 25 yard 'drive') starting from a�
speed u�1� = 68 mile/h, then on Fig 8 look up the value of s at 100 ft/sec or 68 mile/h which is 532 ft, and then�
subtract 76 to give 456 ft, and the value of u after this distance is 80 ft/sec or 54.5 mile/h. The difference be-�
tween the times at these two speeds, Le. (3.41 - 2.55) ,= 0.86 sec, is the time taken for the ball to travel this�
distance having started at t 100 ft/sec. For a 36 yard 'drive' starting at 110 ft/sec or 75 mile/h, the time re-�
quired is 1.16 sec and the speed falls to 80 ft/sec or 54.5 mile/h at the end of this distance.�

Also shown on Fig 8 is the force retarding the ball at each speed level obtained using equation (21). For the�
two ranges�

  (i) D = 1.84 x 10�-4�u�2� lbf  and  (ii) D = 0.92 X 10�-4�u�2�lbf.�

It is very interesting to note that because of the sudden fall in C�D� at Re = 2.15 x 10�5�, see Fig 7, ie. at the end�
of range (i} at about 50 ft/sec (34 mile/h), the resistance to the flight of the football decreases despite its in-�
crease in speed, until the speed exceeds about 70 ft/sec (48 mile/h).�



Fig 8  Speed - time - distance - drag force curves for football in horizontal flight�



It is curious that much of the game of football should be played in the one hydrodynamic region where there�
is a distinct critical Reynolds number. Footballers could thus be expected to develop one set of anticipations�
for playing balls up to a speed of, say, 40 ft/sec (27 mile/h) and another for above 70 ft/sec (45 mile/h) with�
an expectation which anticipates anomaly in the region in between; most football takes place, of course, in�
range (i).�

Using the same critical Reynolds number it is interesting to note how the corresponding ball speed u�0�

changes with atmospheric temperature, so that at 7�)�C, which represents a cold day in winter, u�c� = 45 ft/sec,�
and at 34°C, a hot summer's day, U�c� = 55 ft. sec.�



The Stockport Express for 26 October 1972 reports shots in which "using a strobo light technique" the ball�
reached 73.3 mile/h; reports of ball speeds of up to 75 mile/h (110 ft/sec) are now common.�

INFLUENCE OF SURFACE FINISH�

The drag on a sphere is a result of the non-symmetric pressure distribution resulting from the presence of the�
wake which arises out of the separation of the boundary layer from the surface of the sphere. For the same�
air speed, the further around the sphere that separation occurs, the smaller is the pressure defect and conse-�
quently the smaller is the drag force.�

The position of the point of separation for bluff or rounded bodies depends on phenomena in the boundary�
layer adjacent to the ball surface so that, for example, vorticity in the approaching fluid is very important.�
When the flow in the boundary layer becomes turbulent before reaching a separation point, a shift towards�
the rear is promoted causing the resistance to be lowered very considerably. A classic experiment due�
to Prandtl (see p40 [4]) demonstrates how a hoop of thin wire (1/300 that of the sphere diameter) when fixed�
to a sphere ahead of the point where the flow would separate if it were laminar (normally this is about�
80° from the foremost point of the body) acts so as to set up eddies in the boundary layer and to displace the�
separation point backwards to the 110° to 120° position thus substantially diminishing the resistance. Turbu-�
lence in the boundary layer inhibits separation which also explains the existence of the fall in C�D� as the Rey-�
nolds number reaches its critical value, since turbulence sets in at higher air speeds. The particular Reynolds�
number at which the boundary layer becomes turbulent is influenced considerably by the surface finish of�
the sphere. Roughening the surface causes an onset of turbulence at a lower air speed than for a smooth�
sphere and at some speeds the drag on a roughened sphere is  only about 1/5th the drag on a smooth sphere.�
This behaviour is summarised in Fig 7. Thus the effect of increase in surface roughness is to lower the Rey-�
nolds number at which the critical drop in C�D� occurs; the fall in C�D� become smaller however and the super-�
critical C�D� larger. Coarse roughness causes the disappearance of the fall in C�D� and it becomes independent�
of Reynolds number. The waviness of a smooth surface is found also to lead to somewhat similar results�
though, in some cases erratic results are encountered.�

In respect of footballs there is obviously both waviness and roughness. There is systematic waviness due to�
stitching and roughness due to the nature of the material of which the ball is manufactured. The newer mate-�
rials of which footballs are made - laminated layers of cloth and rubber, some with smooth and others with�
matt finishes-may certainly give rise to different aerodynamic performances as against the older style leather�
balls; even a new leather ball behaves differently from one which is well worn.�

These two aspects of the effect of surface detail on drag are also characterised in the case of a cricket ball;�
the expectations from a new ball in cricket are, on the one hand, proverbial, whilst the consequences of the�
seam of the ball in bowling have been the object of identical remarks by Royle [6] and Lighthill [4]. The lat-�
ter has written, "A seam bowler in cricket practises the art of tripping the boundary layer on one side of the�
ball only, so as to produce an asymmetric pressure distribution that will make the ball swerve". In the same�
vein, it may be imagined that the lacing on an old style football would seem to have aerodynamic conse-�
quences.�

(b) The lift of a rotating football�

There is a paucity of information about the lift and drag coefficients, C�L�. (equal to L�1�/�2�q�u�2�A' where L is the�
lift force) and C�D�, for a rotating sphere, but using Maccoll's results [2] some interesting calculations may be�
made. Maccoll measured the forces on a sphere of diameter 6 in. when Re�j� 10�5� along a cross-wind axis in a�
wind tunnel and his results are reproduced in Fig 9. He showed that, approximately, when the ratio e of�
equatorial speed to wind speed > 1, the lift coefficient C�L� is about 0.35, when e = 0.4, C�L�is slightly�negative�,�
and for 0.4 < e < 1, C�L� increases linearly from zero to 0.35. The aerodynamic effect of combining transla-�
tional and rotational motion is clearly a complicated one.�



For simplicity, by assuming a football in horizontal flight, the "bending" or "curving" undergone by the�
ball in the particularly important case of the "taking of a corner" may be estimated. Similar calculations�
apply, of course, to any "banana" shot. No direct experimental evidence is to hand to facilitate comparison�
with theory, beyond the well known qualitative fact that a goal may be scored directly from a corner kick�
and that a considerable amount of swerve can be imparted to a ball by kicking it off-centre, thereby making�
it spin.�

Fig 9 Variations of Drag and Lift Coefficients with Reynolds number for a Spinning�
Sphere. (Taken from [1]).�

Suppose that when the ball is kicked it is given a rotational speed of 15 rev/sec about a vertical axis and�
that it may be assumed to have an�average or constant� horizontal speed of 60 ft/sec during its flight to the�
goal-mouth, then e is�j� 0.6 and Fig 9 shows C�l�,�j� 0.1. Thus the horizontal side force is C�L�q�A'u�2�/2 and the�
transverse acceleration is C�L�q�A'u�2�/2M. If the distance from the Corner flag to the goal is 120 ft, then in�
120/60 = 2 sec, the in-swing of the ball from its initial line of flight is�1�/�2�f.2�.2� = C�L�q�A�T�u�2�/M�j�10 ft.�

It should be noted from Fig 9 that negative lift coefficients may be encountered ("an out swinger") if the�
rate of spin in the horizontal plane is insufficiently large.�



Now, assuming uniform acceleration, the transverse speed of the ball when it reaches the vicinity of the�
goal-mouth at this time is f.t  = 5. 120/60 =, 10 ft/sec, so that in travelling across the goal-mouth, ie. through�
a distance of 24 ft at 60 ft/sec, the transverse displacement is approx 10 x 24/60 = 4 ft -- sufficient to cause�
the ball to enter the net in an undoubted fashion.�
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