Submarine Design and the Development of the Astute Class

Presented by Kevin Young BEng(Hons) CEng MIMechE

Head of Engineering – Design Improvement

BAE Systems Submarines Solutions

4th December 2007

Contents

- BAE Systems & the Barrow Shipyard
- Why Submarines?
- The Requirement
- The Astute Design
- The Product
- Build Strategy
- Construction
- Major Modules
- Roll out and Naming Ceremony
- Trim Dive
- Questions

BAE Systems & The Barrow Shipyard

Date/reference/classification

BAE Systems Submarine Solutions

What we currently do...

- Design, build and preliminary in-service support for 4 Astute class submarines for the Royal Navy. Bidding for boat 5.
- The delivery of the Swiftsure and Trafalgar class update programme for the Royal Navy
- Industry lead for successor SSBN programme
- CVF Engineering and Block build
- Export contract with Spain for build strategy and manufacture of dome pieces for Spanish submarine programme

First of Class Pedigree

Brief History - Submaries

- First Royal Navy Submarine was Holland 1 built in Barrow in 1901
- Early Naval submarines were designed to operate predominantly on the surface, only diving to remain concealed (normally during the day). The submarines would submerge to attack a target and then remain submerged to make their escape.
- Early submarines were powered in two ways diesel powered on the surface, electrically powered whilst submerged. Limited running time underwater
- The German Navy are said to have been the first to use diesel engines (1906) and to deploy a snorkel (1940').
- The first nuclear submarine USS Nautilus (1954)
- First Royal Navy Submarine was HMS Dreadnought, built in Barrow

Why Submarines?

Why Submarines?

- The ultimate stealth vessels can fulfil roles no other vessel can:
 - Go anywhere underwater
 - Anti submarine and anti surface ship capability
 - Deny enemies the use of an area
 - Gather data (both electronically and visually)
 - Undertake precise strike / land attack
 - (Virtually) invulnerable nuclear deterrent
 - Assymetric force
- Stealth
 - you don't know it's there, AND you don't know it's not there !

Why Nuclear?

- Can stay underwater for very long periods
 - doesn't need refuelling,
 - produce their own oxygen/water supplies,
 - Can completely circumnavigate the world underwater
 - the only limit on time underwater is food and crew endurance.
- Can deploy rapidly and covertly to any area of the globe
 - Much higher sustained speeds than diesel electric boats
 - No need to surface or snort
- Greater Stored Energy
 - Boat can be larger with more capability and greater crew comfort
 - Able to support more weapons/sensors

The Requirement

The Requirement

- The Royal Navy operates two different types of submarine SSN, SSBN
- SSBN provide the nuclear deterrent
 - The Royal Navy have 4 Vanguard class SSBNs 150m long, 16000 T
- SSNs are 'Hunter/Killer' Submarines
 - Anti submarine/ship warfare
 - Surveillance
 - Reconnaissance
 - Land attack using missiles.
- The RN currently has 9 SSNs, each about 85m long, weighing about 4600Te
 - Swiftsure & Trafalgar Classes
 - Astute is SSN20

The Astute Design

Design

•The Reality: Greater weapons/sensors capacity, enhanced Reactor safety, enhanced boat safety and modular build means:

•A longer, wider and heavier boat than originally planned

•over 70% of components are new or re-qualified

The Product

Astute Class

- 97m long
- 10m draught
- 11.3 beam
- Displaces 7,400 tonnes submerged
- Depth >300m
- >25 knots
- 6 Torpedo tubes
- Stowage for 1.5 x T class weapons
 - Spearfish
 - Tomahawks
- PWR2 Pressurised Water Reactor fuelled for life
- Astute's sonar suite has the processing power of c1,000 Pentium IV computers

A Complex Design

- The Astute Boat 1 plan comprises:
 - 3000 requirements
 - 7,100 drawings
 - 29,000 build activities
 - 96,000 installable items
 - 10,000 devices
- A Nuclear Submarine built today by BAE Systems is comparable in engineering complexity with current space programmes (as recognised in US research programmes).

A Complex Design

	Space Shuttle	Astute
Length, Diameter	38m, 7m	97m, 10.7m
Weight	78 T.e.	7400 T.e.
Components	3 main engines 368 km of cable 1,060 valves 27,000 tiles	Nuclear reactor, 2 diesel generators, weapons 148 km of cable 23,000 pipes, 5,000 valves 50,000 tiles
Crew	5 - 7	97
Mission Duration, Design Life	5 – 16 days, 100 missions	> 90 days, 25 years
Environment	190 – 350 miles above sea level, vacuum	Below sea level, very high pressure, corrosive
Speed	17500 m.p.h.	> 25 knots

General Layout

Build Strategy

Build Strategy

- Construction Elephant
- Modular Construction
- Pre-outfit
- Modularisation
- Maximise Construction Facilities

HMS Astute - Boat 1122 Build Definition

Construction

Explaining Build Stages

Units that make up the Astute Submarine

DDH Build Line Prior to Combination of Boat

Vertical Outfit

- •Parallel / concurrent working fronts
- •360 degree working internal / external of unit
- •More efficient equipment installation (improves access to pressure hull outfitting)
- •Allows a greater number of tradesmen to work at one time
- •Allows the use of cranes rather than fleeting / end loading
- •Staging is lifted in and out with crane in levels, hence no building taking part inside unit

Horizontal Outfit Units Ready for Combination

Structural Welding

- Materials
 - HY80 derivative and HSLA 80
- Weld techniques
 - Submerged Arc automated for pressure hull (virtually defect free on Astute)
 - Flux Core for remainder
- NDE techniques
 - Radiography largely replaced by Time of Flight Tip Diffraction Ultrasonics allied to phased array sensing of near surface crack tip detection.
- Increasingly fabrications (often weld clad) are replacing castings

Other Welding

- Pipe Materials
 - 316L Stainless Steel (thick and thin wall)
 - 254 SMO Super Duplex Stainless Steel
 - 3602 Carbon Steel
 - 70/30 Copper/Nickel
 - 90/10 Copper Nickel
 - Monel K500
- Overall there are 57,000 pipe welds
- Many are high integrity welds with strict QA controls
- NDE
 - Radiography still dominant
 - 18,000 pipe welds demand radiography

Accuracy & Dimensional Control

Accuracy Control

- Necessary survey points established in plan
- Key to modularisation
- Interfaces are defined and maintained throughout evolving design

Dimensional Control

- As-built information collected for further analysis
- Interfaces managed in CAD before join up

Advantages:

- Minimise rework
- Build under control and confidence

Major Modules

Submarine Assembly – Major Modules

Submarine Assembly – Major Modules

Main Propulsion Machinery Package (MPMP)

Facts about Astute MPMP

- Astute MPMP took 4 years 8 months to Build, Test & Ship
- •During Trials the Main Shaft turned 1,693,832 revolutions. This would mean the submarine would have travelled from Barrow to Australia (8671 Miles)
- There are 1,263 Pipes fitted to the MPMP
- There are 11,500 meters of cable fitted to the MPMP
- 3105 Tonnes of fuel oil was used (683,920 gallons)
- 10.9 Billion litres of sea water was pumped; enough to fill 4,034 Olympic-size swimming pools

BAE SYSTEMS

Main Machinery Propulsion Package (MPMP)

Shipped 10th June 2005 into Unit 2

Submarine Assembly – Modules

Command Deck Module (CDM)

BAE SYSTEMS

Combat System

- All electronics masts
- Visual, communications, radar etc.
- Navigation inertial sensors
- Combat management system
- Decoys, various sensors, intelligence and SF, Tomahawk Launch

Command and Control

Tomahawk Land

Above Water Sensors

Underwater Sensors

Warspite Facility

Transporting CDM from Warspite to DDH

Command Deck Module

DDFOC – Shipping of Command Deck Module

DDFOC – Shipping of Command Deck Module

Submarine Assembly – Modules

Submarine Assembly – Major Modules

Submarine Assembly – Major Modules

The Finished Article

Summary

- Complex Engineering, Manufacturing and Test programme
- Highly skilled Resource
- Teamwork Essential
- Design process is iterative
- Structured Design approach
- Design above anything must be SAFE
- Improved working environments and methods
- There's always more we can do to improve.....

Astute Boat 4 and beyond

- Boat 4 based on boat 1-3 but...
 - At least 15% lower purchase cost (real terms)
 - Same capability.
 - Overcome obsolescence issues.
 - Same or lower in service costs.
 - At least as safe (preferably safer).
- Boats 5-7 are based on boat 4 but...
 - At least 5% lower purchase cost (real terms).
 - Same capability.
 - Lower in service costs.
 - Improved safety.

Sales Pitch!

- If you think your company has a product or technology that you think would be of benefit to design or construction of a nuclear submarine then let me know. We welcome alternative thinking and products.
- Our workload going forward means that we have numerous opportunities for design engineers in all disciplines.
- We also take on around 40 graduates across a wide range of areas each year for a structured training programme
- So let me know if you or someone you know are interested.

kevin.young@baesystems.com